Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 132158, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718997

RESUMO

Atmospheric water harvesting (AWH) technology has attracted significant attention as an effective strategy to tackle the global shortage of freshwater resources. Work has focused on the use of hydrogel-based composite adsorbents in water harvesting and water conservation. The approaches adopted to make use of hygroscopic inorganic salts which subject to a "salting out" effect. In this study, we report the first use of modified UIO-66-NH2 as a functional steric cross-linker and Sa-son seed gum was used as polymeric substrate to construct super hygroscopic hydrogels by free radical copolymerization. The maximum water uptake on SMAGs (572 cm3·g-1) outperforms pure UIO-66-NH2 (317 cm3·g-1). Simultaneously, our first attempt to use it for anti-evaporation applications in an arid environment (Lanzhou, China) simulating sandy areas. The evaporation rate of the anti-evaporation material treated with 0.20 % super moisture-absorbent gels (SMAGs) decreased by 6.1 % over 64 h period under natural condition in Lanzhou, China. The prepared material can not only absorb liquid water but also water vapor, which can provide a new way for water collection and conservation technology. The design strategy of this material has wide applications ranging from atmospheric water harvesting materials to anti-evaporation technology.

2.
Macromol Rapid Commun ; 44(17): e2300182, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37294660

RESUMO

Flexible self-adhesive hydrogel sensors are attracting considerable concerns in recent years. However, creating a self-adhesive hydrogel sensor with excellent mechanical properties remains to be challenging. Herein, a double-sided self-adhesive hydrogel capable of strain sensor with high strength is demonstrated by penetration strategy. The middle poly(acrylic acid)-polyacrylamide/Fe3+ (PAA-PAM/Fe3+ ) tough layer endows the double-sided self-adhesive hydrogel with high mechanical properties, while the bilateral poly[2-(methacryloyloxy) ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide-polyacrylamide (PSBMA-PAM) adhesive layers are used to ensure excellent adhesiveness on diverse substrates. The tough layer of the double-sided self-adhesive hydrogel sensor shows a strong interface bonding force against the adhesive layer. The double-sided self-adhesive hydrogel sensor enables excellent adhesiveness on diverse substrates. More importantly, it can accurately detect different strains and human motions as a self-adhesive hydrogel strain sensor. This work manifests a new route of structural design to develop a self-adhesive hydrogel sensor with excellent mechanical properties that is suitable for a wide range of applications.


Assuntos
Adesivos , Dispositivos Eletrônicos Vestíveis , Humanos , Adesivos/química , Cimentos de Resina , Hidrogéis/química , Movimento (Física) , Condutividade Elétrica
3.
Angew Chem Int Ed Engl ; 61(39): e202209741, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35934675

RESUMO

Growing lubricating hydrogel coatings in controllable manners on diverse material surfaces demonstrates promising applications. Here, a surface modification method is reported for in situ growing hydrogel coatings onto surfaces of diverse substrates in the absence of UV assistance. It is performed by decorating substrates with a universal mussel-inspired synthetic adhesive with catechol groups. Upon being immersed in reaction solution, these groups can assist substrate bonding and in situ capture and reduce Fe3+ into Fe2+ for decomposing S2 O8 2- into SO4 - ⋅ catalytically at the interface to initiate interface polymerization of monomers. As a result, hydrogel coatings with controllable thickness could be grown on surfaces of arbitrary substrates to change their surface characteristics regardless of materials size, category, geometry and transparency, implying considerable potential in surface engineering.

4.
Langmuir ; 38(23): 7157-7167, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35635328

RESUMO

Bacterial infections and limited surface lubrication are the two key challenges for bioimplants in dynamic contact with tissues. However, the simultaneous lubricating and antibacterial properties of the bioimplants have rarely been investigated. In this work, we successfully developed a multifunctional coating with simultaneous antibacterial and lubricating properties for surface functionalization of bioimplant materials. The multifunctional coating was fabricated on a polyurethane (PU) substrate via polydopamine (PDA)-assisted multicomponent codeposition, containing polyethyleneimine (PEI) and trace amounts of copper (Cu) as synergistic antibacterial components and zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) as the lubricating component. The obtained PDA(Cu)/PEI/PMPC coating showed excellent antibacterial activity (antibacterial efficiency: ∼99%) to both Escherichia coli and Staphylococcus aureus compared with bare PU. The excellent antibacterial properties were attributed to the combined effect of anti-adhesion capability of hydrophilic PMPC and PEI and bactericidal activity of Cu in the coating. Meanwhile, the coefficient of friction of the coating was significantly decreased by ∼52% compared with bare PU owing to the high hydration feature of PMPC, suggesting the superior lubricating property. Furthermore, the PDA(Cu)/PEI/PMPC coating was highly biocompatible toward human umbilical vein endothelial cells demonstrated by in vitro cytotoxicity tests. This study not only contributes to the chemistry of PDA-assisted multicomponent codeposition but also provides a facile and practical way for rational design of multifunctional coatings for medical devices.


Assuntos
Células Endoteliais , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Humanos , Poliuretanos/química
5.
Angew Chem Int Ed Engl ; 61(26): e202204410, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412006

RESUMO

In this study, a novel surface initiated polymerization (SIP) method was developed from organic-inorganic hybrid persistent initiator coating (PIC) that embeds initiator molecules into inorganic silica sol-gel layer. Comparing with traditional silane initiator surface that prepared by chemical vapor deposition (CVD) method, the PIC can effectively improve the mechanical stability of initiator that was able to endure ten-thousand times of friction cycles. Besides, it allows polymer grafting from sub-surface and so the grafted brushes, poly 3-sulfopropyl methacrylate potassium salt (pSPMA) on the PIC were also much more wear-resisting than those prepared by the traditional ways. More importantly, the PIC could still trigger new polymerization reaction when the grafted brushes were worn off. In addition, the PIC is universal and can be covered on different substrates including glass, metals and plastics, etc. to realize functionalization of these materials. The approach may pave technological way for the application of surface grafted polymer brushes.

6.
Langmuir ; 38(9): 2832-2839, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202545

RESUMO

With the development of microelectromechanical systems (MEMS), ultrathin dry lubrication coatings have received significant attention. In this study, a nanoscale organic-inorganic hybrid lubricative coating (OHL) with a low friction coefficient and wear resistance was developed by grafting polysiloxane brushes on an inorganic silica sol layer. Friction evaluations, including the friction coefficient, load-bearing capacity, abrasion, and durability, were conducted. Compared with the surface of polysiloxane brushes without a silica sol layer, the introduction of a silica sol interlayer can effectively improve the mechanical stability of polysiloxane brushes; namely, the friction coefficient under high load pressure was able to remain low for a long time. In addition, the lubrication performance can also further improve by modifying the upper friction pair surface with the OHL. More importantly, the OHL has an excellent stability and general applicability. The OHL coating can be applied to various solid surfaces that provide a similar lubrication performance, which may provide a new vision for reducing the friction coefficient and enhancing the wear resistance, especially under dry friction conditions.

7.
Adv Mater ; 34(11): e2108889, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35014101

RESUMO

Controllably coating the surfaces of substrates/medical devices with hydrogels exhibits great application potential, but lacks universal techniques. Herein, a new method, namely ultraviolet-triggered surface catalytically initiated radical polymerization (UV-SCIRP) from a sticky initiation layer (SIL) (SIL@UV-SCIRP), is proposed for growing hydrogel coatings. The method involves three key steps: 1) depositing a sticky polydopamine/Fe3+ coating on the surface of the substrates-SIL, 2) reducing Fe3+ ions to Fe2+ ions as active catalysts by UV illumination with the assistance of citric acid, and 3) conducting SCIRP in a monomer solution at room temperature for growing hydrogel coatings. In this manner, practically any substrate's surface (natural or artificial materials) can be modified by hydrogel coatings with controllable thickness and diverse compositions. The hydrogel coatings exhibit good interface bonding with the substrates and enable easy changes in their wettability and lubrication performances. Importantly, this novel method facilitates the smooth growth of uniform hydrogel lubrication coatings on the surface of a range of medical devices with complex geometries. Finally, as a proof-of-concept, the slippery balls coated with hydrogel exhibited smooth movement within the catheter and esophagus. Hence, this method can prove to be a pioneering universal modification tool, especially in surface/interface science and engineering.

8.
ACS Appl Mater Interfaces ; 13(12): 14562-14568, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33662200

RESUMO

Inspired by natural living surfaces, researchers have developed many excellent anti-smudge coatings, but there remain some critical challenges such as complex or expensive fabrications, poor long-term stability, non-transparency, etc., which may limit their large-area application. In this work, we designed a robust and transparent omniphobic coating with a one-step dip coating method. The perfluoropolyether chains were grafted on a smooth glass surface, and the coating surface not only presented good liquid repellency and stain resistance but also owned excellent mechanical wear resistance. The stain resistance property and wettability have barely changed after hundreds of thousands of friction cycles in air or even in an organic solvent surrounding. The robust hybrid coating possesses simple preparation, an excellent property, and durability, which may bring a widespread interest in the engineering application field.

9.
ACS Appl Mater Interfaces ; 12(41): 46981-46990, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32955852

RESUMO

Preventing ice formation and ice swift removal from the solid surface are essential in numerous application fields. Superhydrophobic coating is an effective way to delay the icing phenomenon. However, the superhydrophobic coating was wetted easily after icing-deicing cycles that led to the failure of anti-icing. In this study, a robust, amphiphobic coating consisted of fluorinated multiwalled carbon nanotubes (FMWCNTs) and commercial polyurethane was constructed by a simply spray process. Because of the addition of FMWCNTs, the coating demonstrated a good amphiphobic feature and highly efficient photothermal conversion, which endowed the coating surface with excellent deicing and defrosting characteristics under sunlight irradiation. In addition, self-cleaning and self-healing properties of the coating under sunlight ensured its efficient photothermal conversion and long service life. To further improve the photothermal deicing effect, a coating system containing a photothermal layer (P), thermal-conductive layer (C), and thermal-protective layer (P) was constructed. The heat generating from the photothermal layer can transfer the whole coating surface by the conductive layer, but with limited transmission to substrate materials by a thermal-protective layer. The coating system can still deice and defrost rapidly on the whole surface and only a small portion of photothermal coating was irradiated under extremely low temperature. The outdoor experiment has confirmed that the coating melted and removed snow rapidly in a winter environment. The multifunctional photothermal deicing coating may have a wide application in outdoor surrounding.

10.
J Hazard Mater ; 383: 121151, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31678744

RESUMO

Green Zn-based spinel sorbents for hot coal gas desulfurization have been developed with the assistance of optimization procedures. The pilot study highlights an outstanding ordered mesoporous support (SBET = 323 m2 g-1, Da = 4.3 nm) of SAPO-34@as-prepared SBA-15 (SS) for loading active metal oxides. ZnCo2O4 spinel loaded onto SS (ZnCo2/SS) exhibits a prominent desulfurization performance compared to other sorbents whose partial Co is substituted by Mn or Fe in spinel B-site, owing to the slight effect of PO43- in SS. After systematic evaluation on role of sulfidation condition, 50 wt% ZnCo2/SS sorbent possesses the sulfur storage capacity of 138.08  mg g-1at550 °C and little loss of active species in 5 desulfurization-regeneration cycles. Results of high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) etc. demonstrate that 70.42% of initial sulfur capacity of ZnCo2/SS presented in the 2nd utilization is associated with zinc evaporation, existence of high stable sulfides and partial sintering. The improved deactivation kinetic model suitably describes that the H2S concentration distribution relates with the spatial position of fixed-bed reactor and desulfurization time.

11.
Biomater Sci ; 7(9): 3599-3608, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31339146

RESUMO

Bio-inspired wet adhesives attract considerable attention in the biomedical field. However, achieving reversible and controllable wet adhesion still remains a challenging issue. In this study, we report a new thermo-responsive polysaccharide wet adhesive conjugate named Chitosan-Catechol-poly(N-isopropyl acrylamide) (Chitosan-Catechol-pNIPAM), where catechol, the wet adhesive moiety, and pNIPAM, the thermal responsive group, are chemically tethered to a chitosan backbone. The as-synthesized Chitosan-Catechol-pNIPAM presents a reversible sol-gel transition behavior when the temperature is cycled below and above the lower critical solution temperature (LCST, 35 °C), along with dynamic switching between lubrication and wet adhesion on various materials. Based on these excellent features, Chitosan-Catechol-pNIPAM can realize controllable attachment/detachment behavior over the skin through heating/cooling processes. Due to its good biocompatibility, the Chitosan-Catechol-pNIPAM coated syringe needles exhibit instant hemostasis after removing the needles from the punctured sites of mouse veins. Overall, the as-synthesized Chitosan-Catechol-pNIPAM is expected to be used as a new intelligent adhesive in various biomedical settings.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/química , Catecóis/química , Quitosana/química , Hemostasia , Adesivos Teciduais/química , Animais , Materiais Biocompatíveis/síntese química , Masculino , Camundongos , Coelhos , Ratos , Ratos Wistar , Aderências Teciduais , Adesivos Teciduais/síntese química
12.
ACS Appl Mater Interfaces ; 10(42): 36531-36539, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30273491

RESUMO

Doped graphite-like coating (GLC) has aroused great interest as one of the most promising protective materials in marine applications. However, there is a lack of systematic research on the tribocorrosion and antifouling performance of doped GLC coatings in harsh marine environments. Herein, a multifunctional (Cr, Cu)-GLC coating with combined antifouling and tribocorrosion properties was prepared via a magnetron sputtering method. The experimental results indicate that the resultant coatings changed from a dense structure to a loose columnar structure with the increment of Cr and Cu doping amount. At the same time, the hardness of the coating gradually decreases, but the contact angle between coating and seawater gradually increases. The algae adhesion test reveal that the algae density on the surface of the (Cr, Cu)-GLC coating decreases from about 565 to 70/mm2 as the amount of doping increased. However, on the contrary, the friction coefficient of the coating under OCP condition increases from 0.06 to about 0.35. Overall, the mild doped (Cr, Cu)-GLC coating exhibits the best comprehensive properties, combining antifouling and tribocorrosion properties. The corresponded mechanisms are discussed in terms of the coating microstructure, antifouling, and tribocorrosion behavior.

13.
Langmuir ; 34(44): 13116-13122, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30173516

RESUMO

In the supramolecular host-guest system, the host molecule selectively identifies the guest and forms the inclusion complex with the guest molecule. In this study, the physicochemical properties of solid surfaces were regulated by the interfacial supramolecular recognition. The host-guest interaction between ß-cyclodextrin and guest molecules, including adamantaneacetic acid, sodium dodecyl sulfonate, and a copolymer of 2-methacryloyloxy-2-methyladamantane and 3-sulfopropyl methacrylate potassium salt, was introduced onto the silicon substrate to construct supramolecular composite surfaces. After the assembly of hydrophilic guest molecules on the host surface, the wettability, aqueous lubrication, and anti-algae cell adhesion properties of the supramolecular composite surfaces were improved. This strategy of host-guest interfacial supramolecular recognition provides a new route to prepare aqueous lubrication and antifouling materials.

14.
ACS Appl Mater Interfaces ; 10(9): 7593-7601, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28891633

RESUMO

Integrating proteins into a hydrogel network enables its good bioactivity as an ECM environment in biorelative applications. Although extensive studies on preparing protein hydrogels have been carried out, the reported systems commonly present very low mechanical strength and weak water-rentention capacity. Learning from the astringent mouthfeel, we report here a protein engineered multinetwork physical hydrogel as TA-PVA/BSA. In a typical case, the BSA protein-integrated poly(vinyl alcohol) (PVA) solution is treated by the freeze-thaw method and forms the first hydrogel network, and tannic acid (TA) then cross-links with BSA proteins and PVA chains to form the secondary hydrogel network based on the noncovalent interaction (hydrogen bond and hydrophobic interaction). The as-prepared TA-PVA/BSA composite hydrogel is a pure physically cross-linking network and possesses ultrahigh tensile strength up to ∼9.5 MPa but is adjustable, relying on the concentration of TA and BSA. Moreover, its mechanical strength is further improved by prestretching induced anisotropy of mechanical performance. Because of its controllable and layered structure as skin, the composite hydrogel presents good water-retention capacity compared to traditional high strength hydrogels. This work demonstrates a novel method to design high mechanical strength but layered physical cross-linking hydrogels and enables us to realize their biorelative applications.


Assuntos
Hidrogéis/química , Adstringentes , Congelamento , Álcool de Polivinil , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...